Kinetic mechanism of pulmonary carbonyl reductase.
نویسندگان
چکیده
The kinetic mechanism of guinea-pig lung carbonyl reductase was studied at pH 7 in the forward reaction with five carbonyl substrates and NAD(P)H and in the reverse reaction with propan-2-ol and NAD(P)+. In each case the enzyme mechanism was sequential, and product-inhibition studies were consistent with a di-iso ordered bi bi mechanism, in which NAD(P)H binds to the enzyme first and NAD(P)+ leaves last and the binding of cofactor induces isomerization. The kinetic and binding studies of the cofactors and several inhibitors such as pyrazole, benzoic acid, Cibacron Blue and benzamide indicate that the cofactor and Cibacron Blue bind to the free enzyme whereas the other inhibitors bind to the binary and/or ternary complexes.
منابع مشابه
The roles of glutathione, glutathione peroxidase, glutathione reductase and the carbonyl protein in pulmonary and extra pulmonary tuberculosis.
BACKGROUND This study determines the protein carbonyls which cause cellular damage and glutathione, glutathione peroxidase, glutathione reductase act as antioxidants. MATERIALS AND METHODS This study was carried out in different categories of pulmonary and extra pulmonary tuberculosis cases of newly sputum culture positive diagnosed pulmonary categorie I (n=100), extra pulmonary patients cate...
متن کاملFunctional Mechanism of C-Terminal Tail in the Enzymatic Role of Porcine Testicular Carbonyl Reductase: A Combined Experiment and Molecular Dynamics Simulation Study of the C-Terminal Tail in the Enzymatic Role of PTCR
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymati...
متن کاملAnalysis of an unprecedented mechanism for the catalytic hydrosilylation of carbonyl compounds.
This work details an in-depth evaluation of an unprecedented mechanism for the hydrosilylation of carbonyl compounds catalyzed by (PPh3)2Re(O)2I. The proposed mechanism involves addition of a silane Si-H bond across one of the rhenium-oxo bonds to form siloxyrhenium hydride intermediate 2 that reacts with a carbonyl substrate to generate siloxyrhenium alkoxide 4, which, in turn, affords the sil...
متن کاملThe catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.
Despite their widely varying physiological functions in carbonyl metabolism, AKR2B5 (Candida tenuis xylose reductase) and many related enzymes of the aldo-keto reductase protein superfamily utilise PQ (9,10-phenanthrenequinone) as a common in vitro substrate for NAD(P)H-dependent reduction. The catalytic roles of the conserved active-site residues (Tyr51, Lys80 and His113) of AKR2B5 in the conv...
متن کاملHuman carbonyl reductase 1 is an S-nitrosoglutathione reductase.
Human carbonyl reductase 1 (hCBR1) is an NADPH-dependent short chain dehydrogenase/reductase with broad substrate specificity and is thought to be responsible for the in vivo reduction of quinones, prostaglandins, and other carbonyl-containing compounds including xenobiotics. In addition, hCBR1 possesses a glutathione binding site that allows for increased affinity toward GSH-conjugated molecul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 252 1 شماره
صفحات -
تاریخ انتشار 1988